信号放大器屏蔽器-成都赛越通信

5G时代,射频功率放大器需求有望多点开花

417人参与 |分类: 行业动态|时间:2019年04月10日 13:26

射频功率放大器(PA)作为射频前端发射通路的主要器件,通常用于实现发射通道的射频信号放大。5G将带动智能移动终端、基站端及IOT设备射频PA稳健增长,智能移动终端射频PA市场规模将从2017年的50亿美元增长到2023年的70亿美元,复合年增长率为7%,高端LTE功率放大器市场的增长,尤其是高频和超高频,将弥补2G/3G市场的萎缩。GaAs器件是消费电子3G/4G应用的主力军,5G时代仍将延续,此外,物联网将是其未来应用的蓝海。GaN器件则以高性能特点目前广泛应用于基站、雷达、电子战等军工领域,在 5G 时代需求将迎来爆发式增长。5G时代,射频功率放大器需求有望多点开花,建议买入行业龙头。

 

推荐组合:我们认为,随着5G进程的加快,5G基站、智能移动终端及IOT终端射频PA将迎来发展良机,使用量大幅增加,看好细分行业龙头,推荐:CREE 、Skyworks、稳懋、三安光电、环旭电子,建议关注:海特高新(海威华芯)、旋极信息(拟收购安谱隆)。

 

行业观点

 

5G推动手机射频PA量价齐升: 4G时代,智能手机一般采取1发射2接收架构,预测5G时代,智能手机将采用2发射4接收方案,未来有望演进为8接收方案。功率放大器(PA)是一部手机最关键的器件之一,它直接决定了手机无线通信的距离、信号质量,甚至待机时间,是整个射频系统中除基带外最重要的部分。手机里面PA的数量随着2G、3G、4G、5G逐渐增加。以PA模组为例,4G多模多频手机所需的PA芯片为5-7颗,预测5G手机内的PA芯片将达到16颗之多,价值量超过7.5美元。5G智能终端射频前端SIP将是大势所趋,高通已发布5G第二代射频前端模组,MEMS预测,到2023年,用于蜂窝和连接的射频前端SiP市场将分别占SiP市场总量的82%和18%。按蜂窝通信标准,支持5G(sub-6GHz和毫米波)的前端模组将占到2023年RF SiP市场总量的28%。高端智能手机将贡献射频前端模组SiP组装市场的43%,其次是低端智能手机(35%)和奢华智能手机(13%)。

 

5G基站,PA数倍增长,GaN大有可为:4G基站采用4T4R方案,按照三个扇区,对应的射频PA需求量为12个,5G基站,预计64T64R将成为主流方案,对应的PA需求量高达192个,PA数量将大幅增长。目前基站用功率放大器主要为LDMOS技术,但是LDMOS技术适用于低频段,在高频应用领域存在局限性。我们研判5G基站GaN射频PA将成为主流技术,逐渐侵占LDMOS的市场,GaAs器件份额变化不大。GaN能较好的适用于大规模MIMO,预计2022年,4G/ 5G基础设施用RF半导体的市场规模将达到16亿美元,其中,MIMO PA年复合增长率将达到135%,射频前端模块的年复合增长率将达到119%。

 

5G时代,窄带物联网设备射频前端迎来发展新机遇:在手机市场追求更快更强的同时,有另外一个市场就是窄带物联网 (Cat-M /NB-IoT),NB-IoT虽然有要求和LTE相同的上行功率(power class3),但是信号的峰均比较低。另外,NB-IoT采用半双工方式工作,避免使用FDD双工器,PA后端的插入损耗小。这些因素可以让NB-IoT的PA更加偏向于非线性的设计,同时采用更小的Die设计,从而达到节省成本和提高效率的目的。对于NB-IoT PA来讲,超宽带、低电压、极端温度和低成本是重点要考虑的方向。

 

风险提示

 

智能手机及基站射频PA被国际巨头垄断,技术难度较大,国内进展缓慢,合格率较低,成本居高不下,射频PA需要持续性投入。

 

 

 

1、5G智能移动终端,射频PA的大机遇

 

1.1射频功率放大器(PA)-射频器件皇冠上的明珠

 

射频功率放大器(PA)作为射频前端发射通路的主要器件,主要是为了将调制振荡电路所产生的小功率的射频信号放大,获得足够大的射频输出功率,才能馈送到天线上辐射出去,通常用于实现发射通道的射频信号放大。

 

手机射频前端:一旦连上移动网络,任何一台智能手机都能轻松刷朋友圈、看高清视频、下载图片、在线购物,这完全是射频前端进化的功劳,手机每一个网络制式(2G/3G/4G/WiFi/GPS),都需要自己的射频前端模块,充当手机与外界通话的桥梁—手机功能越多,它的价值越大。

 

射频前端模块是移动终端通信系统的核心组件,对它的理解可以从两方面考虑:一是必要性,它是连接通信收发器(transceiver)和天线的必经之路;二是重要性,它的性能直接决定了移动终端可以支持的通信模式,以及接收信号强度、通话稳定性、发射功率等重要性能指标,直接影响终端用户体验。

 

射频前端芯片包括功率放大器(PA),天线开关(Switch)、滤波器(Filter)、双工器(Duplexer和Diplexer)和低噪声放大器(LNA)等,在多模/多频终端中发挥着核心作用。

 

 

 

手机和WiFi连接的射频前端市场预计将在2023年达到352亿美元,复合年增长率为14%。

 

射频前端产业中最大的市场为滤波器,将从2017年的80亿美元增长到2023年225亿美元,复合年增长率高达19%。该增长主要来自于BAW滤波器的渗透率显著增加,典型应用如5G NR定义的超高频段和WiFi分集天线共享。

 

功率放大器市场增长相对稳健,复合年增长率为7%,将从2017年的50亿美元增长到2023年的70亿美元。高端LTE功率放大器市场的增长,尤其是高频和超高频,将弥补2G/3G市场的萎缩。

 

砷化镓器件应用于消费电子射频功放,是 3G/4G 通讯应用的主力,物联网将是其未来应用的蓝海;氮化镓器件则以高性能特点目前广泛应用于基站、雷达、电子战等军工领域,利润率高且战略位置显著,由于更加适用于 5G,氮化镓有望在 5G 市场迎来爆发。

 

 

 

1.2 5G推动手机射频PA量价齐升

 

射频前端与智能终端一同进化,4G时代,智能手机一般采取1发射2接收架构。由于5G新增了频段(n41 2.6GHz,n77 3.5GHz和n79 4.8GHz),因此5G手机的射频前端将有新的变化,同时考虑到5G手机将继续兼容4G、3G 、2G标准,因此5G手机射频前端将异常复杂。

 

预测5G时代,智能手机将采用2发射4接收方案。

 

 

 

无论是在基站端还是设备终端,5G给供应商带来的挑战都首先体现在射频方面,因为这是设备“上”网的关键出入口,即将到来的5G手机将会面临多方面的挑战:

 

更多频段的支持:因为从大家熟悉的b41变成n41、n77和n78,这就需要对更多频段的支持;

 

不同的调制方向:因为5G专注于高速连接,所以在调制方面会有新的变化,对功耗方面也有更多的要求。比如在4G时代,大家比较关注ACPR。但到了5G时代,则更需要专注于EVM(一般小于1.5%);

 

信号路由的选择:选择4G anchor+5G数据连接,还是直接走5G,这会带来不同的挑战。

 

开关速度的变化:这方面虽然没有太多的变化,但SRS也会带来新的挑战。

 

其他如n77/n78/n79等新频段的引入,也会对射频前端形态产生影响,推动前端模组改变,满足新频段和新调谐方式等的要求。

 

 

 

Qorvo指出,5G将给天线数量、射频前端模块价值量带来翻倍增长。以5G手机为例,单部手机的射频半导体用量达到25美金,相比4G手机近乎翻倍增长。其中滤波器从40个增加至70个,频带从15个增加至30个,接收机发射机滤波器从30个增加至75个,射频开关从10个增加至30个,载波聚合从5个增加至200个。

 

5G手机功率放大器(PA)用量翻倍增长:PA是一部手机最关键的器件之一,它直接决定了手机无线通信的距离、信号质量,甚至待机时间,是整个射频系统中除基带外最重要的部分。手机里面PA的数量随着2G、3G、4G、5G逐渐增加。以PA模组为例,4G多模多频手机所需的PA芯片为5-7颗,预测5G手机内的PA芯片将达到16颗之多。

 

5G手机功率放大器(PA)单机价值量有望达到7.5美元:同时,PA的单价也有显著提高,2G手机用PA平均单价为0.3美金,3G手机用PA上升到1.25美金,而全模4G手机PA的消耗则高达3.25美金,预计5G手机PA价值量达到7.5美元以上。

 

载波聚合与Massivie MIMO对PA的要求大幅增加。“一般情况下,2G只需非常简单的发射模块,3G需要有3G的功率放大器,4G要求更多滤波器和双工器载波器,载波聚合则需要有与前端配合的多工器,上行载波器的功率放大器又必须重新设计来满足线性化的要求。

 

5G无线通信前端将用到几十甚至上百个通道,要求网络设备或者器件供应商能够提供全集成化的解决方案,这大大增加产品设计的复杂度,无论对器件解决方案还是设备解决方案提供商都提出了很大技术挑战。


来源:手机信号博客(微信/手机号:13540359908),转载请保留出处和链接!

地址:

必填

选填

选填

必填

◎已有 0 人评论,请发表您的观点。